Isogenies on Edwards and Huff curves
نویسندگان
چکیده
Isogenies of elliptic curves over finite fields have been well-studied, in part because there are several cryptographic applications. Using Vélu’s formula, isogenies can be constructed explicitly given their kernel. Vélu’s formula applies to elliptic curves given by a Weierstrass equation. In this paper we show how to similarly construct isogenies on Edwards curves and Huff curves. Edwards and Huff curves are new normal forms for elliptic curves, different than the traditional Weierstrass form.
منابع مشابه
Analogues of Vélu's formulas for isogenies on alternate models of elliptic curves
Isogenies are the morphisms between elliptic curves, and are accordingly a topic of interest in the subject. As such, they have been wellstudied, and have been used in several cryptographic applications. Vélu’s formulas show how to explicitly evaluate an isogeny, given a specification of the kernel as a list of points. However, Vélu’s formulas only work for elliptic curves specified by a Weiers...
متن کاملTwisted Edwards Curves
This paper introduces “twisted Edwards curves,” a generalization of the recently introduced Edwards curves; shows that twisted Edwards curves include more curves over finite fields, and in particular every elliptic curve in Montgomery form; shows how to cover even more curves via isogenies; presents fast explicit formulas for twisted Edwards curves in projective and inverted coordinates; and sh...
متن کاملGeometric Progressions on Elliptic Curves.
In this paper, we look at long geometric progressions on different model of elliptic curves, namely Weierstrass curves, Edwards and twisted Edwards curves, Huff curves and general quartics curves. By a geometric progression on an elliptic curve, we mean the existence of rational points on the curve whose x-coordinate (or y-coordinate) are in geometric progression. We find infinite families of t...
متن کاملArithmetic progressions on Huff curves
We look at arithmetic progressions on elliptic curves known as Huff curves. By an arithmetic progression on an elliptic curve, we mean that either the x or y-coordinates of a sequence of rational points on the curve form an arithmetic progression. Previous work has found arithmetic progressions on Weierstrass curves, quartic curves, Edwards curves, and genus 2 curves. We find an infinite number...
متن کاملTwisting Edwards curves with isogenies
Edwards’ elliptic curve form is popular in modern cryptographic implementations thanks to their fast, strongly unified addition formulas. Twisted Edwards curves with a = −1 are slightly faster, but their addition formulas are not complete over Fp where p ≡ 3 (mod 4). In this short note, we propose that designers specify Edwards curves, but implement scalar multiplications and the like using an ...
متن کامل